447 research outputs found

    Lieb–Robinson bounds for open quantum systems with long-ranged interactions

    Get PDF
    We state and prove four types of Lieb–Robinson bounds valid for many-body open quantum systems with power law decaying interactions undergoing out of equilibrium dynamics. We also provide an introductory and self-contained discussion of the setting and tools necessary to prove these results. The results found here apply to physical systems in which both long-ranged interactions and dissipation are present, as commonly encountered in certain quantum simulators, such as Rydberg systems or Coulomb crystals formed by ions

    AKER: A Design and Verification Framework for Safe andSecure SoC Access Control

    Full text link
    Modern systems on a chip (SoCs) utilize heterogeneous architectures where multiple IP cores have concurrent access to on-chip shared resources. In security-critical applications, IP cores have different privilege levels for accessing shared resources, which must be regulated by an access control system. AKER is a design and verification framework for SoC access control. AKER builds upon the Access Control Wrapper (ACW) -- a high performance and easy-to-integrate hardware module that dynamically manages access to shared resources. To build an SoC access control system, AKER distributes the ACWs throughout the SoC, wrapping controller IP cores, and configuring the ACWs to perform local access control. To ensure the access control system is functioning correctly and securely, AKER provides a property-driven security verification using MITRE common weakness enumerations. AKER verifies the SoC access control at the IP level to ensure the absence of bugs in the functionalities of the ACW module, at the firmware level to confirm the secure operation of the ACW when integrated with a hardware root-of-trust (HRoT), and at the system level to evaluate security threats due to the interactions among shared resources. The performance, resource usage, and security of access control systems implemented through AKER is experimentally evaluated on a Xilinx UltraScale+ programmable SoC, it is integrated with the OpenTitan hardware root-of-trust, and it is used to design an access control system for the OpenPULP multicore architecture

    FPGA Acceleration of Mean Variance Framework for Optimal Asset Allocation

    Get PDF
    Asset classes respond differently to shifts in financial markets, thus an investor can minimize the risk of loss and maximize return of his portfolio by diversification of assets. Increasing the number of diversified assets in a financial portfolio significantly improves the optimal allocation of different assets giving better investment opportunities. However, a large number of assets require a significant amount of computation that only high performance computing can currently provide. Because of the highly parallel nature of Markowitzpsila mean variance framework (the most popular approximation approach for optimal asset allocation) an FPGA implementation of the framework can also provide the performance necessary to compute the optimal asset allocation with a large number of assets. In this work, we propose an FPGA implementation of Markowitzpsila mean variance framework and show it has a potential performance ratio of 221 times over a software implementation

    Field Programmable Gate Array (FPGA) Based Fish Detection Using Haar Classifiers

    Get PDF
    The quantification of abundance, size, and distribution of fish is critical to properly manage and protect marine ecosystems and regulate marine fisheries. Currently, fish surveys are conducted using fish tagging, scientific diving, and/or capture and release methods (i.e., net trawls), methods that are both costly and time consuming. Therefore, providing an automated way to conduct fish surveys could provide a real benefit to marine managers. In order to provide automated fish counts and classification we propose an automated fish species classification system using computer vision. This computer vision system can count and classify fish found in underwater video images using a classification method known as Haar classification. We have partnered with the Birch Aquarium to obtain underwater images of a variety of fish species, and present in this paper the implementation of our vision system and its detection results for our first test species, the Scythe Butterfly fish, subject of the Birch Aquarium logo
    • …
    corecore